ACID-BASE PROPERTIES OF MELTS AND GLASSES OF Na₂O.P₂O₅-x B₂O₃ SYSTEM

Juraj LEŠKO^a, Marie DORUŠKOVÁ^b and Jan TRŽIL^b

^a Institute for Metallurgy Processes Theory,

Czechoslovak Academy of Sciences, 703 00 Ostrava and

^b Department of Chemistry, Mining Institute, 708 00 Ostrava

Received January 25th, 1983

Boron oxide in the Na₂O.P₂O₅-x B₂O₃ system behaves as a Lux base. Its addition to Na₂O. P₂O₅ brings about transformation of a Co(II) indicator from octahedral to tetrahedral configuration, increase in the optical basicity $\Lambda_{Pb(II)}$, increase in the relative basicity of the melt as determined by means of a galvanic cell, and depolymerization reactions releasing PO₄^{3⁻} ions. In the Na₂O-B₂O₃ system free of P₂O₅, boron oxide behaves as a Lux acid. The amphoteric nature of B₂O₃ is explained in terms of Lux's acid-base theory extended in analogy with the protolysis theory. The theoretical optical basicity values do not indicate the amphoretic behaviour of B₂O₃ because in this approach boron oxide is *a priori* regarded as more acidic than Na₂O. P₂O₅.

The degree of acidity or basicity of oxide melts is an important parameter in relation to their structure and chemical and physical properties. Oxides are conventionally classed as acidic or basic with respect to their behaviour in water. About twenty empirical relations have been suggested since 1869 for expressing the basicity of slags and glasses¹, all of them based on the concentration of acidic or basic oxides in the solidified sample. Proceeding from the idea that the O^{2-} ion in oxide melts plays a similar role as the H⁺ ion in aqueous solutions, Lux² defined acids and bases by means of the relation

$$base = acid + O^{2-}. \tag{A}$$

Flood³ extended this concept also to polyacids, where the acid-base transformation (A) is associated with a breakdown of oxygen bridges:

$$2(X - O)^{-} = X - O - X + O^{2^{-}}, \qquad (B)$$

where X = Si, P, B.

In analogy with the pH in aqueous solutions, the pO exponent, *i.e.*, the negative value of the common logarithm of activity of O^{2-} ions, can be used to characterize the acid-base nature of oxide melts; high pO values characterize acid melts, low pO

values, basic melts. The activity of the ions, however, cannot be defined thermodynamically because $a(O^{2^-})$, *i.e.*, the absolute basicity of the melt, cannot be directly determined. In work^{4,5} pO has been determined as the ratio of $a(O^{2^-})$ in the melt under study to the corresponding value in a reference melt, established by measuring the electromotive voltage of concentration galvanic cells with oxygen electrodes. Chemical galvanic cells with so-called indicator cations⁶ can also be employed for this purpose.

The acid-base nature of glasses can be evaluated based on the absorption spectra of cobalt(II) or lead(II) indicators. The configuration of Co(II) is transformed from octahedral to tetrahedral as the basicity of the glass is increased⁷. The optical basicity $\Lambda_{Pb(II)}$ can be determined⁸⁻¹⁰ based on the position of the absorption maxima in the UV spectra of Pb(II). According to¹¹, the theoretical optical basicity Λ can be calculated from the electronagetivities regardless of whether the substance forms a glass or not.

The aim of the present work was to evaluate the acid-base nature of boron oxide in Na₂O.P₂O₅. Melts and glasses of the Na₂O.P₂O₅-x B₂O₃ systems with x = 0 - 1.5were measured by means of chemical galvanic cells and spectroscopic Co(II) and Pb(II) indicators. In practice, Na₂O.P₂O₅ is used as a fluxing agent in X-ray fluorescence analysis, and molten sodium phosphates serve as model systems in the study of metallurgical slags^{12,13}.

EXPERIMENTAL

Chemicals

All the chemicals used were of reagent grade purity. $Na_2B_4O_7$, B_2O_3 , and $Na_2O.P_2O_5$ were prepared by fusing $Na_2B_4O_7$.10 H₂O, H₃BO₃, and $NaH_2PO_4.2$ H₂O, respectively, in a platinum crucible. The spectroscopic measurements were performed using cobalt oxide and lead nitrate as indicators. After the measurements the samples were analyzed for sodium, total phosphorus, and the indicator ions by atomic absorption spectrometry on a Perkin-Elmer 3030 instrument. Phosphate (PO₃⁴⁻) in the presence of polymeric (PO₃⁻)_n ions was determined spectrophotometrically in the form of vanadatomolybdatophosphoric acid.

Absorption Spectra of Glasses

The absorption spectra of cobalt(II) and lead(II) in the glass bead samples were measured over the ultraviolet-visible region at 20°C on a Specord UV-VIS instrument (Carl Zeiss, Jena); sample free of indicator served as the reference standard. The indicator was added to the sample in the form of Co_2O_3 or as two or three drops of a $10^{-2}M$ solution of $Pb(NO_3)_2$, and the whole was fused in a platinum crucible at 900°C for 2 h. The melt was cast in a preheated Pt-Au-Rh mold. The weight of the cold glass beads was 5 g, thickness about 0.25 cm.

Measurement of Electromotive Voltage of Galvanic Cell in Melts

An \ominus Ni | NiO in melt | O₂, Pt \oplus galvanic cell was used for the measurements. Nickel oxide was added to the Na₂O.P₂O₅-x B₂O₃ system in an amount such that the Ni²⁺ ions replaced 1 mol.%

 Na^+ ions. The layout of the cell is shown in Fig. 1. The melt was accomodated in a platinum crucible 1. The oxygen electrode was constituted by a platinum capillary 2, i.d. 1 mm, through which dry oxygen was passed. The upper end of the capillary was connected to a copper tube serving for the air feed and also for the oxygen feed. The nickel electrode 3 was a wire 1 mm in diameter accomodated in a protective Al_2O_3 tube 4 sealed to a platinum tube 5. Tubes 4 and 5 were flushed with argon. The temperature was measured with a PtRh 10 thermocouple submerged in the melt. The measurements were performed in an electric resistance furnace and the electromotive voltage was recorded on a Minigor R 501 recorder.

RESULTS AND DISCUSSION

The results obtained by using the Co(II) optical indicator are given in Table I and shown in Fig. 2. Curve 1 has a shape typical of octahedrally bonded Co(II) in glasses⁷, whereas curves 2 and 3 have shapes typical of the tetrahedral configuration. The Co(II) configuration transformation is described by the equation⁹

$$\operatorname{Co}^{2+}(O_{\rm h}) + 4 \operatorname{O}^{2-}(\operatorname{solvated}) \rightleftharpoons [\operatorname{CoO}_4]^{6-} (T_{\rm d}\operatorname{-solvated})$$
 (C)

This transformation in the Na₂O.P₂O₅ system is promoted by added B₂O₃, which implies that shifting the equilibrium (C) forwards, boron oxide behaves as a base and is an O²⁻ ion donor. In the absence of P₂O₅, however, in the Na₂O-B₂O₃ system, B₂O₃ acts as an acidic oxide. The Co(II) configuration is transformed from

FIG. 1

Layout of the galvanic cell. 1 Pt crucible with melt, 2 Pt capillary, 3 Ni wire, $4 \text{ Al}_2\text{O}_3$ tube, 5 Pt tube, 6 ceramic seal, 7 argon inlet, 8 argon outlet, 9 thermocouple

Absorption spectra of cobalt(II) in the glasses at 20° C. 1 Na₂O.P₂O₅, 2 Na₂O.P₂O₅. .0.5 B₂O₃, 3 Na₂O.P₂O₅.B₂O₃

tetrahedral to octahedral as the amount of B_2O_3 is increased (Table I), in agreement with the data⁷. It is a drawback of this approach that the changes in the acid-base properties are not indicated continuously. For instance, in the Na₂O-B₂O₃ system the $T_d \rightarrow O_h$ transformation takes place when the amount of the latter reaches the level of Na₂O.4 B₂O₃ (ref.⁷).

The use of the Pb(II) optical indicator enabled a continuous scale of the so-called optical basicity to be defined⁹; the optical basicity values are calculated as

$$\Lambda_{\rm Pb(II)} = (60\ 700 - v'_{\rm max})/31\ 000\,, \tag{1}$$

where v'_{max} is the frequency of the UV maximum in the system under study. The values can be compared with the theoretical optical basicity Λ_{theor} , calculated as¹¹

$$\Lambda_{\rm theor} = (z_{\rm A} r_{\rm A}/2) (1/\gamma_{\rm A}) + (z_{\rm B} r_{\rm B}/2) (1/\gamma_{\rm B}) + (z_{\rm C} r_{\rm C}/2) (1/\gamma_{\rm C}), \qquad (2)$$

where z_A , z_B , and z_C are the charge numbers of the ions A, B, and C, respectively, r_A , r_B , and r_C are the ratios of the numbers of the A, B, and C cations, respectively, to the total number of oxygen atoms in the compound, and $\gamma = 1.36(x' - 0.26)$ where x' is the Pauling electronegativity.

The results for the Na₂O.P₂O₅-x B₂O₃ systems and, for a comparison, for the Na₂O-B₂O₃ systems are given in Table I. The optical basicity values in the Na₂O--B₂O₃ system agree with the published data⁹ as well as with the results obtained by us by using the Co(II) indicator. Both $\Lambda_{Pb(II)}$ and Λ_{theor} decrease with increasing B₂O₃ content. As to the optical basicity in the Na₂O.P₂O₅-x B₂O₃ systems, no litera-

TABLE I

Symmetry of the cobalt(II) complexes in the glasses at 20°C and the basicity values Λ

System	Cobalt(II) complexes symmetry	$\Lambda_{ m theor}$	Л _{РЬ(11)}
$Na_2O.P_2O_5$	0 _b	0.53	0.54
$Na_2O.P_2O_5.0.25 B_2O_3$	$T_{d}^{"}$	0.52	0.55
$Na_2O.P_2O_5.0.5 B_2O_3$	$T_{\rm d}$	0.51	0.56
$Na_2O.P_2O_5.B_2O_3$	T_{d}	0.49	0.58
$Na_2O.P_2O_5.1.5 B_2O_3$	T_{d}	0.48	0.58
$Na_2O.2 B_2O_3$	T_{d}	0.53	0.53
$Na_{2}O.7 B_{2}O_{3}$	0 _b	0.46	0.45

ture data are available. The $\Lambda_{Pb(II)}$ basicity agrees with the results obtained with the Co(II) indicator only in that the values increase with increasing proportion of B_2O_3 . No conclusions can be drawn from the numerical values of $\Lambda_{Pb(II)}$, the optical basicity concept only being under development⁴. For instance, the acid-base nature of Na₂O P_2O_5 and Na₂O.2 B_2O_3 is better shown by Co(II) exhibiting the O_h and T_d configurations respectively, than by the $\Lambda_{Pb(II)}$ data which are identical for the two systems. According to the electrochemical data of relative basicity⁴, the acidity of Na₂O. P_2O_5 is 10⁷ times higher than that of Na₂O.2 B_2O_3 . It should be borne in mind, however, that it cannot be decided whether a relation exists between the optical basicity and the Lux basicity or not¹¹. According to Duffy and Ingram¹¹, the $a(O^{2^-})$ and Λ values can be regarded as separated and independent measures of basicity. A relation between them has been found for borate melts in work¹⁴, where the differences between Λ_{theor} and $\Lambda_{Pb(II)}$ are also discussed.

The fact that Λ_{theor} decreases with increasing B_2O_3 content can be explained in terms of the amphoteric behaviour of a component being not allowed for by the method in question. Even the definition (2) fails to take into account the fact that the acidity or basicity only manifests itself in the interaction with the environment. By the γ_x values the acidity increases in the series Na₂O-CaO-Al₂O₃-SiO₂-B₂O₃--P₂O₅. In binary systems such as Na₂O-B₂O₃, CaO-SiO₂, or MgO-SiO₂, Λ_{theor} decreases monotonically with increasing amount of the more acidic oxide. Similarly, in the Na₂O-P₂O₅-B₂O₃ ternary system in the Na₂O/P₂O₅ = 1 section, an addition of B₂O₃ ($\Lambda = 0.42$) must lower the Λ value of the mixture with $\Lambda_{\text{ta2O},\text{P}_2\text{O}_5} = 0.52$. It can be proved that in the Na₂O.P₂O₅-x B₂O₃ system the Λ_{theor} value is a monotonic function of x over the region of 0.52 - 0.42.

The acid-base nature of the Na₂O.P₂O₅-x B₂O₃ melts was evaluated at $9\overline{45^{\circ}C}$ by the electromotive voltage measurements. The relative basicity, *i.e.*, the $a_n(O^{2^-})$: $a_1(O^{2^-})$ activity ratio, was determined by means of Eqs (3), (4). The activity ratio was calculated from the E_n , $x_n(Ni^{2^+})$ values assuming, that $\gamma_1 \approx \gamma_n$ (in general, $\gamma_i = \gamma$ for $1 \le i \le n$).

$$E_n - E_1 = -(\mathbf{R}T/2\mathbf{F})\ln\left[a_n(\text{NiO})/a_1(\text{NiO})\right]$$
(3)

$$a_{n}(\text{NiO}) = \gamma_{n}(\text{Ni}^{2+}) x_{n}(\text{Ni}^{2+}) a_{n}(\text{O}^{2-})$$
 (4)

The relative basicity values, as given in Table II, increase with increasing B_2O_3 content.

The measurements on the Na₂O.P₂O₅-x B₂O₃ system by means of the optical indicators and the galvanic cell were supplemented with analysis for PO_4^{3-} ions in solutions obtained by dissolving the rapidly cooled melts. The fraction of PO_4^{3-} from the total phosphorus is plotted against $x(B_2O_3)$ in Fig. 3. The amount of PO_4^{3-}

increases with x increasing up to x = 1. The addition of B_2O_3 brings about depolymerization of the $(PO_3)_n^{n-}$ chain. According to ¹⁵, the chain length in Na₂O.P₂O₅ obtained by fusing NaH₂PO₄ is n = 20-50. Phosphate ions can form also by hydrolysis,

$$(PO_3)_n^{n-} + H_2O \rightleftharpoons (PO_3)_{n-1}^{-(n-1)} + PO_4^{3-} + 2 H^+$$
 (D)

If Na₂O.P₂O₅-x B₂O₃ is dissolved in neutral medium at 20°C, as little as 5 . 10⁻⁶% PO₄³⁻ is formed per second by hydrolysis. The presence of PO₄³⁻ ions in the solution after the sample dissolution is indicative of the occurrence of this ion in the melt itself¹². Methods for the determination of the ion distribution have been worked out also for metallurgical slags insoluble in water¹³, based on the ion distribution in the soluble polymeric phosphates.

TABLE II

Electromotive voltage values and relative activities at 945°C

n	System	E V	x(Ni ²⁺) %	$\log [a_n(O^{2^-})/a_1(O^{2^-})]$
1	Na20.P205	1.111	1.04	0.000
2	Na2O.P2O5.0.25 B2O3	1.047	1.03	0.533
3	$Na_{2}O.P_{2}O_{5}O_{5}O_{5}B_{2}O_{3}$	1.001	1.05	0.875
4	$Na_2O.P_2O_5.B_2O_3$	0.966	1.01	1.213
5	$Na_2O.P_2O_5.1.5 B_2O_3$	0.940	1.02	1.411

Fig. 3

Dependence of the PO_4^{3-} fraction from total phosphorus on x in the Na₂O.P₂O₅.x B₂O₃ system Boron oxide in the Na₂O.P₂O₅-x B₂O₃ system behaves as a Lux base, its addition to Na₂O.P₂O₅ inducing a) change in the cobalt(II) configuration from octahedral to tetrahedral; b) increase in the optical basicity $\Lambda_{Pb(II)}$; c) increase in the relative basicity of the melt determined as the $a(O^{2^-})_{exp}/a(O^{2^-})_{re\,f}$ ratio; and d) depolymerization reaction resulting in the formation of PO₄³⁻ ions. In the absence of P₂O₅, boron oxide behaves as a Lux acid. The amphoteric nature of B₂O₃ can be explained in terms of the Lux's definition (A), by extending it is analogy with the protolysis theory and looking upon the reaction between acid and base as the difference between two simple buffer equilibria,

$$base_1 = acid_1 + O^{2-}; K_{11}$$
 (E)

$$base_2 = acid_2 + O^{2-}; K_{12}$$
 (F)

$$base_1 + acid_2 = base_2 + acid_1; K_{13}$$
 (G)

Taking for $base_1 = B_2O_3$, $base_2 = PO_4^{3-}$, $acid_2 = PO_3^{-}$, then in analogy with (E)-(G),

$$(B_2O_3)_x = 2x BO^+ + x O^{2-}; K_{14}$$
 (H)

$$y PO_4^{3-} = (PO_3^{-})_y + y O^{2-}; K_{15}$$
 (1)

$$y(B_2O_3)_x + x(PO_3^-)_y = 2xy BO^+ + xy PO_4^{3-}; K_{16}$$
 (J)

Reaction (J) takes place provided that $K_{14} > K_{15}$. The PO₄³⁻ content increases linearly with the amount of B₂O₃ and the reaction is quantitative up to x = 1which gives evidence that the above assumption is satisfied. The BO⁺ ion can be formed by reaction (J) similarly as SiO²⁺ is formed¹⁶ by reaction of SiO₂ with H₃PO₄.

For more accurate measurements, the classification of oxides as acidic or basic is insufficient even for melts. Also in these systems the acidity or basicity only appears during their interaction with the environment.

REFERENCES

- 1. Frohberg M. G., Kappor M. L.: Grundlagen und Technologie der Stahlerzeugung, p. 127 Verlag f. Grundstoffindustrie, Leipzig 1974.
- 2. Lux H.: Z. Elektrochem. 45, 303 (1939).
- 3. Flood H., Førland T.: Acta Chem. Scand. 1, 592 (1947).
- 4. Yokokawa T., Kohsaka S.: J. Chem. Eng. Data 24, 167 (1979).
- 5. Asai K., Yokokawa T., Maekawa T.: J. Chem. Soc. Jap. 6, 1005 (1982).
- 6. Tržil J.: Thesis. Institute of Metallurgy, Ostrava 1967.

Leško, Dorušková, Tržil

- 7. Paul A., Douglas R. W.: Phys. Chem. Glasses 9, 21 (1968).
- 8. Duffy J. A., Ingram M. D.: J. Inorg. Nucl. Chem. 36, 39 (1974).
- 9. Duffy J. A., Ingram M. D.: J. Amer. Chem. Scc. 93, 6448 (1971).
- 10. Duffy J. A., Ingram M. D.: J. Inorg. Nucl. Chem. 36, 43 (1974).
- 11. Duffy J. A., Ingram M. D.: J. Inorg. Nucl. Chem. 37, 1203 (1975).
- 12. Meadowcroft T. R., Richardson F. D.: Trans. Faraday Scc. 61, 54 (1965).
- 13. Jeffes J. H .: Can. Metall. Quart. 20, 37 (1981).
- 14. Sumita S., Matsumoto Y., Moringa K., Yanagase T.: Trans. Jap. Inst. Metals 23, 360 (1982).
- 15. Van Wazer J. R.: *Phosphorus and Its Compounds*, Vol. I, p. 779. Interscience, New York 1958.
- 16. Weyl W. A.: Glass Industry 37, 325 (1956).

Translated by P. Adámek.